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Spectrum of the past
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Thirty-four years ago, Curry and Rumelhart 
described a neural network-based approach 
to annotate tandem mass spectra. Their ideas 
foreshadowed several important developments 
in computational mass spectrometry over the 
past decade, but many of the challenges they 
discuss remain relevant today.

Refers to Curry, B. & Rumelhart, D. E. MSnet: a neural network  
which classifies mass spectra. Tetrahedron Comput. Methodol.  
3, 213–237 (1990).

Identifying small molecules from their tandem mass spectra — also 
known as MS/MS or MS2 — is a challenge that many undergraduates 
first encounter in second-year organic chemistry. But the simple exam-
ples presented in chemistry textbooks belie a profoundly challenging 
problem. Experts can often elucidate chemical structures from tandem 
mass spectra, but this process requires careful manual analysis by a 
highly trained chemist. This kind of laborious manual interpretation 
does not scale to the billions of mass spectra that are now collected by 
untargeted metabolomics1 — large-scale studies of small molecules 
present in biological systems (or metabolites) — and, as a result, most 
of the spectra acquired in these experiments currently go unidentified2.

By 1990, the possibility of automating structure elucidation from 
tandem mass spectra had already attracted a great deal of interest. Begin-
ning in the 1960s, the Dendritic Algorithm (better known as DENDRAL)  
project sought to enable de novo structure elucidation by first infer-
ring structural constraints from spectral data, and then computa-
tionally enumerating every possible structure consistent with these 
constraints3. A competing tool, named self-training interpretive and 
retrieval system (STIRS), sought to deduce the presence of key substruc-
tures based on the most similar spectra within a reference library4. Still 
other tools used simple statistical approaches to infer whether unidenti-
fied compounds are members of broad chemical classes (for example, 
polycyclic aromatic hydrocarbons) from their tandem mass spectra5.

Curry and Rumelhart took a different approach6. They sought to 
develop a machine learning model that, given a tandem mass spectrum 
as input, could predict the presence or absence of key chemical sub-
structures in the unidentified molecule. To achieve this, they turned 
to artificial neural networks — an established class of models that in 
1990 had “recently become the object of renewed interest” (ref. 6). 
Rumelhart was deeply familiar with these models, having published a 
seminal paper just a few years earlier on the backpropagation algorithm 
that underlies much of modern deep learning7.

To train their model, Curry and Rumelhart compiled a dataset that 
was remarkably large for its time, with 31,926 spectra in the training set 
alone, and a further 12,671 in the test set. These were low-resolution mass 
spectra in which intensities were recorded at integral mass-to-charge 
ratio (m/z) bins. Recognizing the importance of how these spectra were 

represented as input to the neural network, the researchers devoted spe-
cial effort to devising an appropriate set of mass spectral features. These 
included not just the intensities of fragment ions and neutral losses, but 
also a series of carefully handcrafted features, such as autocorrelation 
sums, modulo-14 sums and even sums of individually selected ion series 
(one feature, for instance, consisted of the sum of intensities at m/z ratios 
of 45, 57, 58, 59, 69, 70, 71 and 85) that were suggested to be particularly 
diagnostic for monofunctional aliphatic molecules (for example, see 
the mass spectrum of caffeine in Fig. 1). These handcrafted features, 
Curry and Rumelhart argued, would mitigate the noise inherent in raw 
ion intensities and instead “accentuate patterns which correlate with 
molecular structure”.

Curry and Rumelhart selected a set of 36 broad chemical classes —  
chosen for their subjective ‘chemical interest’ — for the model to use when 
evaluating the presence of, for instance, carbonyl, phenol or nitro groups in 
mass spectra used as input. They then trained a multi-task neural network, 
with a single hidden layer of 80 neurons, to classify the presence or absence 
of all 36 classes simultaneously from a given mass spectrum. This neural 
network was named MSnet and took about two weeks to train. However, 
Curry and Rumelhart noticed that many chemically interesting classes 
(for instance, phthalates) were so rare in their training set that, despite 
the presence of highly characteristic fragment ions, they could not be 
reliably identified by this initial model. To address this gap, they devised a 
hierarchical learning strategy, whereby a series of more specialized neural 
networks were trained to recognize sub-categories of each structural class. 
This strategy was found to enable the prediction of less common structural 
classes. For example, the “COO” subnetwork correctly learned to recognize 
more than 92% of the phthalates in the training set, whereas the top-level 
network never learned to recognize the presence of a phthalate group at all.

To evaluate MSnet, Curry and Rumelhart compared their model 
to STIRS — the strongest baseline they could identify in the litera-
ture. However, this comparison did not prove to be straightforward. 
STIRS had been trained to predict a different set of substructures than 
MSnet, using a different dataset of reference spectra as the training 
set. Moreover, the substructures that overlapped between MSnet 
and STIRS were sometimes defined differently by the two models: for 
instance, MSnet used a definition of ‘phenol’ that encompassed all 
aromatic alcohols, whereas STIRS included only true phenols. Even 
the metrics used to evaluate performance were defined differently 
by the developers of STIRS and MSnet. Curry and Rumelhart reported 
that MSnet demonstrated superior performance to STIRS on 12 of 16 
overlapping structural classes, but it is difficult to interpret this result 
in context. Notwithstanding this, the researchers argued that MSnet 
also possessed a number of conceptual advantages over STIRS, perhaps 
most notably the fact that it was capable of estimating well-calibrated 
probabilities of class membership for any given spectrum.

Although the experimental and computational techniques for 
acquiring and analysing MS/MS data have evolved dramatically since 
1990, it is remarkable how much of Curry and Rumelhart’s manuscript 
still rings true today. The researchers emphasized the need for auto-
mated methods for mass spectral interpretation, the huge amount of 
effort that had already been brought to bear on this challenge and the 
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There are also noteworthy conceptual similarities between MSnet 
and modern methods for MS/MS interpretation. A direct connection can 
be drawn between the prediction of chemical substructures in MSnet 
and the prediction of chemical fingerprints in Compound Structure 
Identification (CSI):FingerID8 — the current state-of-the-art method for 
identifying small molecules from their MS/MS spectra. Unfortunately, 
Curry, Rumelhart and their contemporaries did not seem to recognize 
that, even when individual substructures cannot be predicted with 
perfect accuracy, a large number of weakly accurate predictions can 
enable unambiguous molecule identification — a key conceptual leap 
that allowed CSI:FingerID to substantially advance the state of the art.

A notable difference between MSnet and contemporary machine 
learning approaches is the former’s reliance on handcrafted features. 
Today, deep neural networks are noted for their ability to automati-
cally extract representations relevant to the task at hand from raw 
input data. However, tandem mass spectra are often provided as input 
to neural networks by summing ion intensities within small m/z bins  
(for example, 0.01 Da) to produce very long, sparse vectors9. In this 
setting, Curry and Rumelhart’s creative ideas about how to create fea-
tures from MS/MS input spectra for machine-learning models might 
be worth revisiting in the present day.

Curry and Rumelhart’s paper coincided with a surge of interest in 
developing machine learning approaches to interpret MS/MS spectra. 
However, by the end of the 1990s, this enthusiasm had largely faded, 
leading one commentator to conclude that “the ‘heyday’ of the develop-
ment of techniques based on artificial intelligence (AI) for automated 
mass spectral interpretation is past” (ref. 10). Today, with renewed inter-
est in the possibility of deciphering mass spectra with chemical AI, it is 
exciting to reflect on how far the state of the art has advanced since Curry 
and Rumelhart’s seminal work. However, the fact that many of the chal-
lenges that Curry and Rumelhart identified remain as salient today as 
they were in 1990 points to clear opportunities for continued progress.
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surge of interest in neural networks as a means to solve this problem — 
all of which are equally true 30 years later. On the other hand, Curry and  
Rumelhart noted with some dismay that their training dataset 
“contain[s] a shockingly high proportion (estimated at about 6%) of 
completely erroneous spectra” (ref. 6), and the quality and integrity  
of annotated MS/MS data remain an issue today. Whereas much energy 
is invested in developing new model architectures, comparatively less 
is devoted to assembling and curating the data required to train these 
models. Contemporary efforts to evaluate the performance of methods 
for MS/MS interpretation also face many of the same challenges as  
Curry and Rumelhart encountered. New machine learning tools are 
trained and evaluated on different datasets, with different metrics 
and different evaluation set-ups, and benchmarked selectively against 
relevant baselines, all of which can make it difficult to discern whether 
a particular model presents a real advantage over others.
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Fig. 1 | Overview of the design of MSnet. a, Top, structure and tandem mass spec
trum of caffeine. Bottom, overview of the 493 features calculated from an input mass 
spectrum in MSnet. b, Architecture of the top-level neural network in MSnet with 493 
input features, a hidden layer of 80 neurons, and an output layer of 36 classes. Only a  
subset of inputs and connections are illustrated. c, Schematic of the hierarchical 
classification strategy implemented in MSnet. m/z, mass-to-charge ratio.
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